Bibliographically Coupled Patents: Their Temporal Pattern and Combined Relevance

C.-H. Max Kuan National Taiwan University of Science and Technology (NTUST)

Outlines

>Relatedness between patents

- > Temporal pattern of BCed patents
- Patent and Reference Expansion
- **Combined Relevance**

Relatedness between patents

 Patent bibliometric works often involve the detection and measurement of relatedness between patents

Relatedness between patents

 Then, we may observe cooperation/competition relationship, knowledge exchange, ... between entities

Approaches in detecting and measuring patent relatedness

- Text-based
- Classification-based
- Citation-based

Citation-based approaches

- Direct citation (DC)
- Co-citation (CC)
- Bibliographic coupling (BC)

Outlines

> Relatedness between patents

> Temporal pattern of BCed patents

- Patent and Reference Expansion
- Combined Relevance

Temporal pattern of BCed patents

- Age and Span of Patent Pairs
 - Age: how long ago the later patent (P_L) is issued
 - Span: \mathbf{P}_{E} and \mathbf{P}_{L} 's distances in time

Temporal pattern of BCed patents

- Frequency distributions
 - X axis: age in years; Y axis: span in years
 - More reddish or bluish points reflect higher or lower counts

Temporal pattern of BCed patents

- Average BCS and average CCS
 - X axis: age in years; Y axis: span in years
 - More reddish or bluish points reflect higher or lower values

Outlines

- > Relatedness between patents
- > Temporal pattern of BCed patents
- > Patent and Reference Expansion
- Combined Relevance

Patent and Reference Expansion

• A field's continuously increasing numbers of accumulated patents

Center of Science and Technology Informetrics

Patent and Reference Expansion

• BC is more frequently found between patents issued more recently and closer in time, and their BCS also tends to be stronger

Implication to BCS threshold

- Conventional Methods
 - $-P_E$ and P_L have references REF_E and REF_L respectively
 - Jaccard coefficient
 - $\frac{|REF_E \cap REF_L|}{|REF_E \cup REF_L|} \le \frac{|REF_E|}{|REF_E \cup REF_L|} \le |REF_E|$
 - Coupling angle (cosine similarity)

 Aged or long-spanned patent pairs are not only fewer but also inherently limited in their coupling strength

Center of Science and Technology Informetrics

Limitation

- Citable patent expansion and cited reference expansion contribute to the temporal pattern.
 - The cited reference expansion is particularly applicable to U.S. patents, as U.S. requires full and obligatory disclosure from patent applicants.
 - There is a lack of evidence that non-U.S. patents would undergo cited reference expansion of comparable degree.

Implication to BCS threshold

- Bibliometric researchers had noticed the age and span problem.
 - "an increase of the distance in time between bibliographically coupled articles leads to a diminishing pool of shared references as there is a tendency to cite the more current articles" (Jarneving, 2007b)
 - Usually an observation window is set up so that bibliographically coupled research articles
 - published closer (i.e., about the same age)
 - within the window (i.e., within limited span) are collected and compared together (cf. Jarneving, 2007b; Glänzel, & Czerwon, 1996).

Outlines

- > Relatedness between patents
- > Temporal pattern of BCed patents
- Patent and Reference Expansion

>Combined Relevance

- To observe the knowledge flow or to develop a representative trajectory among patents across a long period of time
- a BCS measure as much immune to their ages and spans as possible would be desirable

- $-REF_E \cap REF_L$ is the information shared between P_E and P_L
- Left factor: how much this shared information relevant to P_E
- Right factor: how much this shared information relevant to P_L

- Average BCS vs. average CR
 - CR's is relatively more uniform distributed across ages and span

- Frequency distribution
 - CR also retains more aged and longspanned pairs

- <u>CR is not ideal</u> as observed above, but it is as simple as the conventional measures, both conceptually and computationally.
- For observing long-term knowledge dissemination or tracing overall development trajectory, CR may be an alternative.

Thank You

