Patent Main Path Analysis with Arc Weights Adjusted by Classification Similarity

Max Kuan National Taiwan University of Science and Technology

Copyright © by Max Kuan

Outlines

>Background

- Methodology
- Empirical Result
- Conclusion

Main path analysis

- A methodology from social network analysis
- Originally aimed to determine the major development trajectory in a scientific field
- Has been applied to patents in detecting technological changes, and finding trajectories of technological development

Basic Assumption

Citation≈Knowledge flow

An Example

Analysis procedure

- 1. A citation network is constructed
- 2. A <u>weight for each arc</u> is assigned based on its <u>traversal count</u>

– There are various algorithms

3. A series of connected arcs across the network is determined as a representative trajectory (i.e., main path)

– There are various methods

Assigning weight

- Search Path Link Count (SPLC) algorithm
 - Weight of $5 \rightarrow 7=25$, as each of five preceding nodes (1 to 5) traverses the arc five times to reach the sink nodes (9 to 11)
 - Weight of $8 \rightarrow 12=12$, as four of its preceding nodes (1 to 4) traverses the arc twice (one following the arc $6 \rightarrow 8$ and the other following the arc $5 \rightarrow 7$), and the other four preceding nodes (5 to 8) traverse the arc once, to reach the sink node 12

Center of Science and Technology Informetrics

Determining main path

- Global Search method
 - Selects one of the paths from source to sink nodes having the greatest combined weight
 - The main path in the network involves the source nodes 1 to 3, the intermediate nodes 4, 5, 7, 8, and the sink nodes 12, 13, and the combined weight along the path is 76 (=7+20+25+12+12)

Outlines

- Background
- > Methodology
- Empirical Result
- Conclusion

Arc's structural connectivity

- An arc would have a <u>greater weight</u> if the arc has <u>greater structural connectivity</u>
 - meaning that it can be reached from more preceding nodes and/or it may lead to more succeeding nodes
- The arc may be deemed as <u>more</u> <u>important in disseminating knowledge</u>

Drawbacks of MPA

- All arcs are treated equal
 - Regardless of how far away the arc is from the source
 - Arc weight should "decay" down the citation chain
 - Regardless of the degree of similarity between the cited and the citing ones
 - Two ideas
 - Higher weight for more similar pairs
 - Higher weight for less similar pairs

Modified analysis procedure

- 1. A citation network is constructed
- 2. A <u>weight for each arc</u> is assigned based on its (<u>traversal count</u>) x (<u>similarity</u> <u>between cited and citing's sets of patent</u> <u>classification symbols</u>)
- 3. A series of connected arcs across the network is determined as a representative trajectory (i.e., main path)

Patent classification

Current U.S. Class:	715/863 ; 345/173; 345/179
Current CPC Class:	G06F 3/04883 (20130101); G06F 21/36 (20130101); H04M
	1/663 (20130101); G06F 3/0488 (20130101); G06F 3/017 (20130101);
	G06F 3/0484 (20130101); G06F 3/04842 (20130101); H04M
	1/67 (20130101); H04M 1/575 (20130101); H04M 2250/22 (20130101)
Current International Class:	G06F 3/033 (20060101)

 Every patent is assigned one or more classification symbols during its application process by examiner according to the patent's disclosed invention and a standard scheme such as IPC (international patent classification), CPC (cooperative patent classification), etc.

Patent classification

- Patents' classification symbols are a valuable source of information
 - determined by **professional examiner**
 - representative of the patents' technical contents
 - based on a common standard

Levels of symbols

- Classification symbols are usually reduced to a higher level for easier processing
 - CPC 3rd level symbols \doteqdot 700
 - $-CPC 4^{th} level symbols = 8000$

3989811

4336233

	СРС	3 rd level	4 th level	СРС	3 rd level	4 th level
	B01D 53/1456	B01D	B01D 53/00	B01D 53/1493	B01D	B01D 53/00
	B01D 53/526	B01D	B01D 53/00	С10К 1/14	С10К	C10K 1/00
	C10L 3/104	C10L	C10L 3/00	C10K 1/143	С10К	C10K 1/00
(C10L 3/103	C10L	C10L 3/00	Y02P 20/152	Y02P	Y02P 20/00
	C01B 17/0408	C01B	C01B 17/00	Y02C 10/06	Y02C	Y02C 10/00

Similarity between symbols

- Jaccard coefficient= $J(x,y) = |x \cap y|/|x \cup y|$
- Generalized Jaccard coefficient

$$J(x,y) = \frac{\sum_{i} \min(x_i, y_i)}{\sum_{i} \max(x_i, y_i)}, \qquad 1 \le i \le n.$$

- Example: patents 3989811 and 4336233
 - Jaccard=1/6, Generalized Jaccard =1/9

	B01D	C10L	C01B	С10К	Y02C	Y02P
3989811	2	2	1	0	0	0
4336233	1	0	0	2	1	1
min(x _i , y _i)	1	0	0	0	0	0
max(x _i , y _i)	2	2	1	2	1	1

Center of Science and Technology Informetrics

Outlines

- Background
- Methodology
- >Empirical Result
- Conclusion

Empirical data

- 675 USPTO patents related to CO₂ capture and storage
- Using CPC symbols
 - Observing difference between 3rd level and 4th-level symbols
- Jaccard similarity
 - Observing difference between ordinary and generalized Jaccard

Observation

- Using 4th level symbol reveals more consistent lineage of technology development
- Using generalized Jaccard reveals more consistent lineage of technology development

An Example

Outlines

- Background
- Methodology
- Empirical Result

> Conclusion

Conclusion

- Pros
 - A main path better reflects the lineage of technology development
 - The modified MPA may also identify additional trajectories of technology development
- Cons
 - For a large citation network, the traversal counts of the arcs become so great that the limited Jaccard coefficients cannot provide much differentiation

Thank You

Copyright © by Max Kuan